自 自然数e 然对数

教育快讯 2019-10-14200未知admin

  声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。详情

  自然对数以常数e为底数的对数。记作lnN(N0)。在物理学,生物学等自然科学中有重要的意义。一般表示方法为lnx。数学中也常见以logx表示自然对数。

  在1614年开始有对数概念,约翰·纳皮尔以及Jost Bürgi(英语:Jost Bürgi)在6年后,分别发表了独立编制的对数表,自然数e当时通过对接近1的底数的大量乘幂运算,来找到指定范围和精度的对数和所对应的真数,当时还没出现有理数幂的概念。1742年William Jones(英语:William Jones (mathematician))才发表了幂指数概念。按后来人的观点,Jost Bürgi的底数1.0001相当接近自然对数的底数e,而约翰·纳皮尔的底数0.99999999相当接近1/e。实际上不需要做开高次方这种艰难运算,约翰·纳皮尔用了20年时间进行相当于数百万次乘法的计算,Henry Briggs(英语:Henry Briggs (mathematician))建议纳皮尔改用10为底数未果,他用自己的方法于1624年部份完成了常用对数表的编制。

  1649年,Alphonse Antonio de Sarasa(英语:Alphonse Antonio de Sarasa)将双曲线下的面积解释为对数。大约1665年,伊萨克·牛顿推广了二项式定理,他将

  展开并逐项积分,得到了自然对数的无穷级数。“自然对数”最早描述见于尼古拉斯·麦卡托在1668年出版的著作《Logarithmotechnia》中,他也独立发现了同样的级数,即自然对数的麦卡托级数。大约1730年,欧拉定义互为逆函数的指数函数和自然对数.

  e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。

  我们可以从自然对数最早是怎么来的来说明其有多“自然”。以前人们做乘法就用乘法,很麻烦,发明了对数这个工具后,乘法可以化成加法,即:

  当然后来数学家对这个数做了无数研究,发现其各种神奇之处,在对数表中出现并非偶然,自然数e而是相当自然或必然的。因此就叫它自然对数底了。

  历史上自然对数y=lnx的产生要比e要早些,当时人们对于微分不定积分的求法已经熟知,并且很早就得到了幂函数

  。但对于n=-1的情况,因n=-1代入幂函数的不定积分表达式中将使分母为0,所以

  。并且根据可导必连续的性质,自然数elnx在(0,+∞)上处处连续、可导。其导数为1/x0,所以在(0,+∞)单调增加。又根据反常积分

  可知,函数的值域为R。虽然这与现代对数函数的运算法则和性质相符,但当时人们并没有意识到这就是对数函数,并且以e为底。

  接下来人们便开始考虑y=lnx的反函数的问题。设y=lnx的反函数为x=f(y),由反函数的求导法则可知,

  如果用x来表示自变量,y来表示因变量,那么自然对数的反函数y=f(x)满足一个非常重要的性质:

  即这个函数求导后仍得到它本身,并且当x=0时,y=1,我们把这个函数写作

  由反函数的性质可知y=exp(x)是定义在R上的单调递增并且处处连续、可微的函数,其值域为(0,+∞)。由于exp(x)求导后得到它自身并且exp(0)=1,我们便可不断地重复该步骤,通过幂级数的知识可知exp(x)能在R上展开成麦克劳林级数:

  。上文说过,在发明自然对数时,人们不知道y=lnx与e之间的关系,所以不知道lne=1。但是,利用

  数学讲求规律和美学,可是圆周率π和自然对数e那样基本的常量却那么混乱,就如同两个“数学幽灵”。人们找不到π和e的数字变化的规律,可能的原因:例如:人们用的是十进制,古人掰指头数数,因为是十根指头,所以定下了十进制,而二进制才是宇宙最朴素的进制,也符合阴阳理论,1为阳,0为阴。再例如:人们把π和e与那些规整的数字比较,所以觉得e和π很乱,因此涉及“参照物”的问题。那么,如果把π和e都换算成最朴素的二进制,并且把π和e这两个混乱的数字相互比较,就会发现一部分数字规律,e的小数部分的前17位与π的小数部分的第5-21位正好是倒序关系,这么长的倒序,或许不是巧合。

  17位倒序区的意义:或许暗示e和π的发展初期可能按照某种彼此相反的规律发展,之后e和π都脱离了这个规律。但是,由于2进制只用0和1来表示数,因而出现相同,倒序相同,栅栏重排相同的情况不足为奇,虽然这种情况不一定是巧合,但思辨性结论不是科学结论,不应该作为科学证据使用。

  为对数函数,可以看到在复数中对数函数是多值函数(即一个自变量对应多个因变量),并且有无数个分支。特别地,当k=0时,称

  即w的实部为z的模取自然对数,虚部为z的幅角主值。这就是当真数为复数时的对数运算公式。注意,因为实部需要对z的模取自然对数,因此r≠0。我们知道在复平面上只有0这个复数的模为0,其他任何复数的模都大于0,所以在复数域中,除了z=0以外所有的复数都可以求对数。

  张同生. 关于整数的自然对数[J]. 淮北煤师院学报(自然科学版),2000,(03):63-65. [2017-08-31].

  华梦霞,陈庆. 利用等价无穷小代换求和式极限[J]. 大学数学,2013,29(01):134-137. [2017-08-31].

Copyright © 2010-2020 落花有情 版权所有  

联系QQ:1352848661